
This standard is issued under the fixed designation C 518; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method covers the measurement of steady state thermal transmission through flat slab specimens using a heat flow meter apparatus.

1.2 The heat flow meter apparatus is used widely because it is relatively simple in concept, rapid, and applicable to a wide range of test specimens. The precision and bias of the heat flow meter apparatus can be excellent provided calibration is carried out within the range of heat flows expected. This means calibration shall be carried out with similar types of materials, of similar thermal conductances, at similar thicknesses, mean temperatures, and temperature gradients, as expected for the test specimens.

1.3 This a comparative, or secondary, method of measurement since specimens of known thermal transmission properties shall be used to calibrate the apparatus. Properties of the calibration specimens must be traceable to an absolute measurement method. The calibration specimens should be obtained from a recognized national standards laboratory.

1.4 The heat flow meter apparatus establishes steady state one-dimensional heat flux through a test specimen between two parallel plates at constant but different temperatures. By appropriate calibration of the heat flux transducer(s) with calibration standards and by measurement of the plate temperatures and plate separation. Fourier’s law of heat conduction is used to calculate thermal conductivity, and thermal resistivity or thermal resistance and thermal conductance.

1.5 This test method shall be used in conjunction with Practice C 1045. Many advances have been made in thermal technology, both in measurement techniques and in improved understanding of the principles of heat flow through materials. These advances have prompted revisions in the conceptual approaches to the measurement of the thermal transmission properties (1-4).² All users of this test method should be aware of these concepts.

1.6 This test method is applicable to the measurement of thermal transmission through a wide range of specimen properties and environmental conditions. The method has been used at ambient conditions of 10 to 40°C with thicknesses up to approximately 250 mm, and with plate temperatures from 195°C to 540°C at 25-mm thickness (5, 6).

1.7 This test method may be used to characterize material properties, which may or may not be representative of actual conditions of use. Other test methods, such as Test Methods C 236 or C 976 should be used if needed.

1.8 To meet the requirements of this test method the thermal resistance of the test specimen shall be greater than 0.10 m²K/W in the direction of the heat flow and edge heat losses shall be controlled, using edge insulation, or a guard heater, or both.

1.9 It is not practical in a test method of this type to try to establish details of construction and procedures to cover all contingencies that might offer difficulties to a person without pertinent technical knowledge. Thus users of this test method shall have sufficient knowledge to satisfactorily fulfill their needs. For example, knowledge of heat transfer principles, low level electrical measurements, and general test procedures is required.

1.10 Standardization of this test method is not intended to restrict in any way the future development of improved or new methods or procedures by research workers.

1.11 Since the design of a heat flow meter apparatus is not a simple matter, a procedure for proving the performance of an apparatus is given in Appendix X3.

1.12 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to consult and establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

C 167 Test Methods for Thickness and Density of Blanket or Batt Thermal Insulations

C 168 Terminology Relating to Thermal Insulation Materials

² The boldface numbers in parentheses refer to the list of references at the end of this test method.

¹ This test method is under the jurisdiction of ASTM Committee C-16 on Thermal Insulation and is the direct responsibility of Subcommittee C 16.30 on Thermal Measurement.

³ Annual Book of ASTM Standards, Vol 04.06.
3. Terminology

3.1 Definitions—For definitions of terms and symbols used in this test method, refer to Terminology C 168 and to the following subsections.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 calibration, \(n \)—the process of establishing the calibration factor for a particular apparatus using calibration specimens having known thermal transmission properties.

3.2.2 calibration transfer specimen, \(n \)—(CTS) a thermal calibration specimen that has been measured by a national standards laboratory.

3.2.3 cold surface assembly, \(n \)—the plate that provides an isothermal boundary at the cold surface of the test specimen(s).

3.2.4 controlled environment, \(n \)—an environment sometimes employed in the apparatus to limit lateral heat flows.

3.2.5 edge insulation, \(n \)—auxiliary insulation used to limit lateral heat flows, these are sometimes permanently mounted in the apparatus.

3.2.6 guard, \(n \)—promotes one-dimensional heat flow. Primary guards are planar, additional coplanar guards can be used and secondary or edge guards are axial.

3.2.7 heat flow meter apparatus, \(n \)—the complete assembly of the instrument, including hot and cold isothermal surfaces, the heat flux transducer(s), and the controlled environment if used, and instrumentation to indicate hot and cold surface temperatures, specimen thickness, and heat flux.

3.2.8 hot surface assembly, \(n \)—the plate that provides an isothermal boundary at the hot surface of the test specimen(s).

3.2.9 heat flux transducer, \(n \)—a device containing a thermopile, or an equivalent, that produces an output which is a function of the heat flux passing through it. The metering area usually consists of a number of differently connected temperature sensors placed on each face of a core and surface sheets to protect the assembly. A properly designed transducer will have a sensitivity that is essentially independent of the thermal properties of the specimen.

3.2.10 metering area, \(n \)—the area of the specimen(s) in contact with the sensor area of the heat flux transducer.

3.2.11 secondary transfer standard, \(n \)—a specimen, which has been measured in a heat flow meter apparatus, which has been calibrated with primary standards, used to calibrate additional apparatuses.

3.2.12 sensitivity, \(n \)—the ratio of the heat flux passing through the transducer to the electrical output of the heat flux transducer.

3.2.13 standard reference material (SRM), \(n \)—a lot of material that has been characterized by a national standards laboratory.

3.2.14 thermal transmission properties, \(n \)—those properties of a material or system that define the ability of the material or system to transfer heat. Properties, such as thermal resistance, thermal conductance, thermal conductivity, and thermal resistivity would be included, as defined in Terminology C 168.

3.3 Symbols and Units—The symbols used in this test method have the following significance:

3.3.1 \(\lambda \)—thermal conductivity, \(W/(m\cdot K) \).

3.3.2 \(C \)—thermal conductance, \(W/(m^2\cdot K) \).

3.3.3 \(R \)—thermal resistance, \((m^2\cdot K)/W \).

3.3.4 \(q \)—heat flux (heat flow rate, \(Q \), through area \(A \)), \(W/m^2 \).

3.3.5 \(Q \)—heat flow rate in the metered area, \(W \).

3.3.6 \(A \)—metering area, \(m^2 \).

3.3.7 \(L \)—separation between the hot and cold plate assemblies during testing, \(m \).

3.3.8 \(T_m \)—mean temperature, \((T_h + T_c)/2 \), \(K \).

3.3.9 \(\Delta T \)—temperature difference across the specimen, \(K \).

3.3.10 \(\rho \)—(bulk) density of the material tested, \(kg/m^3 \).

3.3.11 \(S \)—calibration factor of the heat flux transducer, \((W/m^2)/V \).

3.3.12 \(E \)—heat flux transducer output, \(V \).

3.3.13 \(T_h \)—temperature of the hot plate surface, \(K \).

3.3.14 \(T_c \)—temperature of the cold plate surface, \(K \).

3.4 Subscripts:

3.4.1 \(h \)—hot.

3.4.2 \(c \)—cold.

3.4.3 \(a, b \)—first and second specimen.

3.4.4 \(m \)—mean.

4. Significance and Use

4.1 This test method provides a rapid means of determining the steady-state thermal transmission properties of thermal insulations and other materials with a high level of accuracy when the apparatus has been calibrated appropriately.

4.2 Proper calibration of the heat flow meter apparatus requires that it be calibrated using specimen(s) having thermal transmission properties determined previously by Test Methods C 177, or C 1114.

Note 1—Calibration of the apparatus typically requires specimens that
are similar to the types of materials, thermal conductances, thicknesses, mean temperatures, and temperature gradients as expected for the test specimens.

4.3 The thermal transmission properties of specimens of a given material or product may vary due to variability of the composition of the material; be affected by moisture or other conditions; change with time; change with mean temperature and temperature difference; and depend upon the prior thermal history. It must be recognized, therefore, that the selection of typical values of thermal transmission properties representative of a material in a particular application should be based on a consideration of these factors and will not apply necessarily without modification to all service conditions.

4.3.1 As an example, this test method provides that the thermal properties shall be obtained on specimens that do not contain any free moisture although in service such conditions may not be realized. Even more basic is the dependence of the thermal properties on variables, such as mean temperature and temperature difference. These dependencies should be measured or the test made at conditions typical of use.

4.4 Special care shall be taken in the measurement procedure for specimens exhibiting appreciable inhomogeneities, anisotropies, rigidity, or especially high or low resistance to heat flow (see Practice C 1045). The use of a heat flow meter apparatus when there are thermal bridges present in the specimen may yield very unreliable results. If the thermal bridge is present and parallel to the heat flow the results obtained may well have no meaning. Special considerations also are necessary when the measurements are conducted at either high or low temperatures, in ambient pressures above or below atmospheric pressure, or in special ambient gases that are inert or hazardous.

4.5 The determination of the accuracy of the method for any given test is a function of the apparatus design, of the related instrumentation, and of the type of specimens under test (see Section 10), but this test method is capable of determining thermal transmission properties within ± 2% of those determined by Test Method C 177 when the ambient temperature is near the mean temperature of the test \(T(\text{ambient}) = T \) (mean)± 1°C, and in the range of 10 to 40°C. In all cases the accuracy of the heat flow meter apparatus can never be better than the accuracy of the primary standards used to calibrate the apparatus.

4.5.1 When this test method is to be used for certification testing of products, the apparatus shall have the capabilities required in 5.8 and one of the following procedures shall be followed:

4.5.1.1 The apparatus shall have its calibration checked within 24 h before or after a certification test using either secondary transfer standards traceable to, or calibration standards whose values have been established by, a recognized national standards laboratory not more than five years prior to the certification date. The average of two calibrations shall be used as the calibration factor and the specimen(s) certified with this average value. When the change in calibration factor is greater than 1%, the standard specimen shall be retested and a new average calculated. If the redetermined change in calibration factor is still greater than 1% the apparatus shall be calibrated using the procedure in Section 6.

4.5.1.2 Where both the short and long term stability of the apparatus have been proven to be better than 1% of the reading (see Section 10), the apparatus may be calibrated at less frequent intervals, not exceeding 30 days. The specimens so tested cannot be certified until after the calibration test following the test and then only if the change in calibration factor from the previous calibration test is less than 1%. When the change in calibration is greater than 1%, test results from this interval shall be considered void and the tests repeated in accordance with 4.5.1.1.

4.5.2 The precision (repeatability) of measurements made by the heat flow meter apparatus calibrated as in Section 6 normally are much better than ± 1% of the mean value. This precision is required to identify changes in calibration and is desirable in quality control applications.

5. Apparatus

5.1 The construction guidelines given in this section should be understood by the user of this test method. While it is mandatory that these details be followed carefully when constructing an apparatus, it behooves the user to verify that the equipment is built as specified. Serious errors of measurement may result from this oversight.

5.2 General:

5.2.1 The general features of a heat flow meter apparatus with the specimen or the specimens installed are described in Section 6 and shown in Figs. 1-3. A heat flow meter apparatus consists of two isothermal plate assemblies, one or more heat flux transducers and equipment to control the environmental conditions when needed. Each configuration will yield equivalent results if used within the limitations stated in this test method. There are distinct advantages for each configuration in practice and these are discussed in Appendix X2.

NOTE 2—Further information can be found in ISO 8301:1991, which is the equivalent ISO standard for the Heat Flow Meter Apparatus.

5.2.2 The exposed surfaces of the plates and the heat flux transducer, that is, the surfaces making contact with the specimens, shall be painted or otherwise treated to have a total hemispherical emittance of greater than 0.8 at their operating temperatures (see Note 3).

NOTE 3—Hard anodizing of aluminum produces a surface with a total hemispherical emittance of approximately 0.85. Several paints are available, which when applied as directed, produce a total hemispherical emittance of approximately 0.86.

5.3 Plate Assemblies, Hot and Cold—The two plate assemblies should provide isothermal surfaces in contact with either side of the test specimen. The assemblies consist of heat source or sink, a high conductivity surface, means to measure surface temperature, and means of support. A heat flux transducer may

![FIG. 1 Apparatus with One Heat Flux Transducer and One Specimen](image-url)
be attached to one, both, or neither plate assembly, depending upon the design, (see Section 6). In all cases, the area defined by the sensor of the heat flux transducer is called the metering area and the remainder of the plate is the guard area.

5.3.1 The portion of each plate assembly in contact with the heat flux transducer, or if a heat flux transducer is not mounted on the plate assembly, the portion in contact with the specimen, shall consist of a high conductivity material, known as the isothermal plate. The isothermal plate shall be supported so as to minimize temperature gradients across its surface. Deviations from isothermal conditions over the plate surface of no more than ± 0.3 K shall be allowed.

5.3.2 A means shall be provided to maintain the temperature of the plate assemblies at the desired level. Examples are fluid baths, electrical heaters, or thermoelectric coolers, or a combination thereof (7-9).

5.3.3 If a heat flux transducer is located at the midplane of the specimens (see Fig. 2), then means shall be provided to determine the average temperature of the transducer in order to apply temperature corrections to the calibration, except when the test temperatures are equal to those used in calibration, in which case no correction is required. If a matched pair of specimens is tested, the temperature of the transducer can be computed from the temperatures of the plate assemblies.

5.3.4 The plate assemblies shall be sufficiently rigid to maintain flatness and parallelism. For an apparatus designed to be used over wide ranges of conductivity and thickness (thermal resistances) the flatness and parallelism of the plates should be 0.02 % of the maximum linear dimensions of the plates (see Note 4). One way to check this is to use standard

NOTE 4—The planeness of the surface can be checked with a straight-edge, of a length greater than the width or diameter of the unit, held against the surface and viewed with a light behind the straightedge. Departures as small as 25µm are readily visible, and larger departures can be measured using shimstock or thin paper.

5.3.4.1 It is important to maintain the parallelism of the plates for several reasons. In most cases it is the plate separation, which is measured in order to determine specimen thickness. Furthermore, the plate parallelism is important in maintaining consistent surface contact with specimens in repeat testing, such as calibration, and is required to maintain a uniform temperature difference across the specimen(s). If the plate temperatures are cycled continuously during testing, the flatness needs to be checked periodically.

5.3.5 Plate flatness may become critical when measuring specimens with less thermal resistance than the calibration standards, irrespective of the thickness or rigidity of the calibration standard. For rigid thin specimens the criteria given in 5.3.4 may not be sufficient.

5.3.6 The rigidity, flatness, and parallelism of the plates may impede the testing of rigid specimens where it is not possible to obtain good surface contact. In such cases, the use of a thin sheet of suitable homogeneous material may be interposed between the specimen and the plates surfaces. This thin sheet should have a low thermal resistance relative to the specimen. The resistance of the thin sheet should be determined using a Test Method C 177 apparatus. The resistance of the composite sandwich (sheet-rigid specimen-sheet) then is determined and the value of the sheet resistance subtracted from the total resistance.

5.4 Temperature Measuring and Control Systems:

5.4.1 The surfaces of the plate assemblies in contact with the specimen(s) shall be instrumented with precision temperature sensors such as thermocouples, platinum resistance thermometers (RTD), and thermistors. Temperature sensors shall be mounted in grooves so as to be flush with the surface in contact with the specimen(s).

5.4.2 No strict specification is given as the number of temperature sensors that shall be used for each surface; however, the user shall report the uncertainty of the temperature measurement, including the component due to temperature nonuniformity across the surface. In some cases where temperature mapping of the plate surfaces has indicated high uniformity under all conditions of use, one thermal sensor per surface has been used satisfactorily.

5.4.2.1 Special precautions should be taken to ensure that the temperature sensors are anchored thermally to the surface to be measured and that the temperature gradients along the wires leading to the sensors are minimized. If thermocouples on opposing surfaces are connected differentially, they shall be electrically insulated from the plates with a resistance of 1
megohm or greater (5, 6).

5.4.2.2 Thermocouples mounted in the surfaces of the plates or set into the surfaces of specimens should be made of wire no longer than 0.25 mm in diameter (No. 30 B and S gage). For highest accuracy only “special limit” thermocouples should be used. In addition, even these “special limit” thermocouples should be checked for nonhomogeneities in the wire. For information concerning voltage output and accuracy of thermocouples in the cryogenic temperature range, and installation see references (7, 8).

5.4.2.3 Temperature sensors should be calibrated to an accuracy equivalent to that for thermocouples conforming to Tables E 230. The precision of the temperature measuring system may need to be better than this to detect the effect of drift on the results discussed in Appendix X3. The accuracy required by a heat flow meter apparatus can best be determined by carrying out an error analysis (see Section 8), and then calibrating the temperature sensors to the degree required.

5.4.2.4 In the special case where the heat flow meter apparatus is used only for repetitive tests on one material and the same plate temperatures are used for calibration, (and where the standards are tested at the same temperatures) the accuracy of the calibration of the temperature sensors will not be as critical since any errors will remain constant and be included in the calibration.

5.5 Heat Flux Transducer:

5.5.1 Types of Heat Flux Transducer—The types of heat flux transducers are described in Practice C 1046. The gradient type, often used in the heat flow meter apparatus, consists of a slab of material, the “core,” across which the temperature gradient is measured, normally with a thermopile. The main transducer surfaces are assumed to be isothermal, so the heat flow will be normal to them. Precautions shall be taken to limit the effect of heat flow through the leads on the output of the thermopile. Often the heat flux transducer also is instrumented to measure one of the surface temperatures of the specimen(s).

5.5.2 Surface Sheets—Both surfaces of the transducer should be covered with a layer of material as thin as is compatible with protection from thermal shunting of the thermopile. The exposed surfaces of the heat flux transducer shall be finished smoothly to conform to the desired geometric shape within the limits of 5.3.5.

5.6 Plate Separation, Specimen Thickness—A means shall be provided to determine the average separation between the heating and cooling plate surfaces during operation. Rigid specimens generally act as the spacers themselves, and plate separation is determined by their thickness at operating temperature. In this case, a small constant force generally is applied to hold the plates against the specimen. It is unlikely that a pressure greater than 2.5 kPa will be required. For easily compressible specimens, small stops interposed between the corners of the hot and cold plates, or some other positive means shall be used to limit the compression of the specimens (see Note 5). Provision shall be made for checking the linearity of any thickness measuring system.

Note 5—Because of the changes of specimen thickness possible as a result of temperature or compression by the plates, it is recommended that specimen thickness be measured in the apparatus, at the existing test temperature and compression conditions whenever possible.

5.7 Edge Insulation—Heat loss from the outer edges of the heat flow meter apparatus and specimens shall be restricted by edge insulation or by governing the surrounding air temperature or by both methods. The three different configuration differ in their susceptibility to edge heat losses as is discussed in Appendix X2 (2, 4, 9, 10).

5.7.1 For all three configurations, the susceptibility to edge heat losses is related strongly to the sensitivity of the transducer to temperature differences along its main surfaces, and therefore, only experimental checks while changing environmental conditions can confirm, for each operating condition, the magnitude of the effect of edge heat losses on measured heat flux. This error should be smaller than 0.5 %.

5.8 Measuring System Requirements—The apparatus measuring system shall have the following capabilities:

5.8.1 The uncertainty of the measurement of the temperature difference across the specimens shall be within ± 0.5 % of the actual temperature difference.

5.8.2 A voltage accuracy of better than 0.2 % of the minimum output (from the transducer) to be measured.

5.8.3 Sufficient linearity so that the system contributes less than 0.2 % error at all outputs.

5.8.4 Sufficient input impedance so that the system contributes less than 0.1 % error for all readings. One megohm has been found adequate for many apparatuses.

5.8.5 Sufficient stability so that the system contributes less than 0.2 % error during the period between calibrations, or 30 days, whichever is greater.

5.8.6 Adequate noise immunity so that less than 0.2 % rms noise occurs in the readings.

5.8.7 Where direct readout equipment is used, adequate provision shall be made for calibration of the electronic circuitry, independent of the remainder of the apparatus, and shall contribute no more than 0.2 % error, for each variable.

5.9 Proven Performance—The test results obtained by this test method only can be assured if the limitations of the apparatus are known. See Appendix X3 for further details. To establish these limitations, one must prove the performance by comparing the results with materials of similar thermal properties previously tested on a guarded hot plate apparatus as those to be evaluated.

5.9.1 A single point of reference may lead to serious errors. It is best to select a range of transfer standards having known thermal transmission properties, which cover the range of values to be tested, in both resistance and thickness.

5.9.2 If the apparatus is to be used at thicknesses greater than that of the available reference materials, a series of calibration measurements shall be performed to insure that the equipment does not introduce additional errors, which may be due to lateral heat losses or gains brought about by insufficient guarding (4, 10). One means of checking for these errors is to use multiple thicknesses of the calibration standards. If these are stacked with a radiation blocking septum between each of the standards, the first approximation is that the total thermal resistance is the sum of the individual thermal resistances.

5.10 Environmental Control—In many applications, it is desirable to control the environment surrounding the test sample to ensure consistent results.
6. Calibration

6.1 The calibration of a heat flow meter apparatus is a very critical operation. Since lateral heat losses or gains of heat are not controlled or eliminated automatically, but only lessened by increasing the size of the guard area and edge insulation, there is no guarantee that the heat losses or gains are negligible under all testing conditions. To ensure that the equipment is performing properly with specimens of different thermal characteristics and thicknesses as the materials to be evaluated. The apparatus shall be calibrated as a unit, with the heat flux transducer(s) installed in the apparatus.

6.2 This procedure applies to the calibration of a heat flow meter apparatus over a wide range of heat flow rates and temperatures, which permits the testing of a wide variety of insulation materials over an extended temperature range.

6.3 The following calibration procedure is used to compute the calibration factor, S (see Practice C 1132) for a heat flow meter apparatus, and must be used by anyone who desires to produce meaningful heat flux measurements from a heat flow apparatus.

6.4 Calibration Standards:

6.4.1 Calibration standards may be good for many years if handled carefully but shall be checked periodically to confirm lack of change.

6.4.2 It is recommended that the primary standards obtained from a national standards laboratory should not be used on a daily basis, but secondary or working standards should be produced. Create a record on the secondary standards with the following information.

6.4.2.1 Name of national laboratory to which it is traceable.
6.4.2.2 Date the secondary standard is produced.
6.4.2.3 Date the secondary standard is tested.
6.4.2.4 Thermal value of the secondary standard.
6.4.2.5 Range of parameters for which it is valid.
6.4.2.6 Estimate of bias of the primary and secondary standards.

6.5 Calibration Procedure:

6.5.1 Calibrate the heat flow meter apparatus under the same conditions of plate temperatures, temperature gradient, specimen thickness, heat flow direction, and apparatus orientation as those for which data are available for the standard.

6.5.2 Single Temperature Point—If the calibration standard is tested at a single mean temperature, conduct the calibration and subsequent tests near the same mean temperature. Use engineering judgment or an error analysis to determine how closely the mean temperature must be maintained. As assessment of the sensitivity of the calibration standard to test conditions should be determined by the user of the transfer standard to determine its limitations of use.

6.5.3 Multiple Temperature Points—If the calibration standard is tested at three or more mean temperatures, calibrate the heat flow meter apparatus at the same temperatures using the same temperature gradients (11). A smooth curve can be fitted to the points such that a calibration factor can be interpolated for any given mean temperature. It is not permissible to extrapolate above or below the mean temperature range of the calibration standard measurements. Changing the plate temperature of a heat flow meter apparatus has the potential of changing apparatus calibration. When changing plate temperatures, take steps to determine if the heat flux transducer calibration factor has changed.

6.5.4 Single Thickness Point—If the original calibration standard is tested at only one thickness, the heat flow meter apparatus can be calibrated for that thickness without an exhaustive thickness study. If tests are to be conducted at thicknesses other than the calibrated thickness, make a thorough study of the error of the heat flow meter apparatus at other thicknesses. Several references on this subject are listed at the end of this test method (4 and 12-15).

6.5.5 Multiple Thickness Points—If the original standard is tested at three or more thicknesses, the heat flow meter apparatus can be calibrated over the same thickness range. A smooth curve can be fitted to the points such that a calibration factor can be interpolated for any given thickness. If tests are to be conducted at thicknesses above or below the calibrated thicknesses, make a thorough study of the error of the heat flow meter apparatus at these thicknesses.

6.6 Calibration of Various Designs:

6.6.1 There are several configurations of heat flow meter apparatuses that use one or two heat flux transducers and one or two specimens in the apparatus. While it is not practical to list all of the possible combinations of apparatus and specimen configurations, this section contains the equations for calculating the calibration factor of three common apparatuses. The calibration and testing configuration should be identical. The calibration factor of a heat flow meter apparatus is determined by running the same standard specimens a number of times, not consecutively, but over a period of time with the standard removed each time.

6.6.2 One Calibration Standard—Apparatus with one heat flux transducer and one standard (see Fig. 1).

\[S = C(T_h - T_c)/E \] (1)

6.6.3 Two Calibration Standards—Apparatus with one heat flux transducer and one specimen configuration (same as that for 6.6.2).

6.6.3.1 The two calibration standards need to be the same thickness and of similar material but need not be identical. With the following equation, it is not necessary to know the thermal conductance of each calibration standard, but it is necessary to know the average thermal conductance of the two standards:
S = \frac{C_a + C_b}{(E_a - T_{ca}) + (E_b - T_{cb})}

6.6.3.2 Two Calibration Standards—Apparatus with one heat flux transducer and two specimens (see Fig. 2).

6.6.3.3 Again, the standards need to be the same thickness and of similar material but not necessarily identical.

S = \frac{C_a + C_b}{E} \left(\frac{1}{(T_{ca} - T_{cb})} + \frac{1}{(T_{ba} - T_{ab})}\right)

6.6.4 One Calibration Standard—Apparatus with two heat flux transducers and one specimen (see Fig. 3).

6.6.4.1 Assuming the two transducers physically are identical and have similar outputs, one can sum the outputs of the two transducers and then calibrate as a single transducer apparatus. In this case, it is very important to keep the mean temperature and the plate temperatures equal to those used in testing the standard.

S = C(Th - Tc) \left(\frac{E1 + E2}{E}\right)

6.6.4.2 As an alternative, each heat flux transducer can be calibrated as an independent apparatus as in 6.6.1.

7. Test Procedures

7.1 Foreword on Testing Procedures—The relative simplicity of this test method may lead one to overlook very important factors, which may affect the results. To ensure accurate measurement, the operator shall be instructed fully in the operation of the equipment. Furthermore, the equipment shall be calibrated properly with reference materials having similar heat transfer characteristics. Also it is necessary that the specimen be prepared properly for evaluation.

7.2 Sampling and Preparation of Specimens:

7.2.1 Test Specimens—One- or two-piece specimens may be used, depending on the configuration selected for the test. Where two pieces are used, they shall be selected from the same material to be essentially identical in construction, thickness, and density. For loose fill materials, the method specified in the material specification or in Practice C 687 shall be used to produce a specimen or specimens of the desired density.

7.2.2 Selection of Specimens—The specimen or specimens shall be of such size as to cover the plate assembly surfaces and shall either be of the actual thickness to be applied in use or of sufficient thickness to give a true average representation of the material to be tested. If sufficient material is not available, the specimen shall at least cover the metering area, and the rest of the plate surfaces must be covered with a mask with a thermal conductivity as close to that of the specimen as possible.

7.3 Specimen Conditioning—Details of the specimen selection and conditioning preferably are given in the material specification. Where such specifications are not given, the specimen preparation shall be conducted in accordance with the requirement that materials shall not be exposed to temperatures that will change the specimens in an irreversible manner. Typically, the material specifications call for specimen conditioning at 22°C (72°F) and 50 % R.H. for a period of time until less than a 1 % mass change is observed over a 24-h period.

For some materials, such as cellulose, considerably longer times may be required for both conditioning and testing.

7.4 Measurements on Specimens:

7.4.1 Blanket and Batt-Type Materials—When specified, the test thickness of blankets and batt-type materials shall be determined before testing in accordance with Test Methods C 167, provided that good contact is maintained between the specimen and the isothermal plates. Also, it is recommended highly that the thickness during the actual test be measured. At the conclusion of the test, the density in the metering area should be determined.

7.4.2 Loose-fill Materials—These materials generally are tested in open test frames as spelled out in Practice C 687. The requirement to measure the density in the metering area is again critical.

7.5 Limitations on Specimen Thickness:

7.5.1 General—The combined thickness of the specimen or specimens, the heat flux transducer and any damping material, which in total equals the distance between the cold and hot plates, must be restricted in order to limit the effect of edge losses on the measurements. In addition edge losses are affected by the edge insulation and the ambient temperature, so the requirements on both of these parameters must be met.

7.5.2 Maximum Spacing Between Hot and Cold Plates—The maximum allowable distance between the hot and cold plates during a test, is related to the dimensions of the heat flux transducer, the metering area, the size of the plate assembly, the construction of the heat meter apparatus, and the properties of the specimen. No suitable theoretical analysis is available to predict the maximum allowable thickness of specimens. It is possible to use the results of an analysis for a similarly sized guarded hot plate as a guide (10, 16-18).

7.6 Procedure of Measurement:

7.6.1 Temperature Difference—For any test, make the temperature difference across the specimen not less than 10 K. For specimens that are expected to have a large thermal resistance, a larger temperature difference in the specimen is recommended (see Practice C 1058 for the selection of the plate temperatures). The actual temperature difference or gradient is best specified in the material specifications or by agreement of the parties concerned.

7.6.2 Edge Insulation—Enclose the edges of the specimens with thermal insulation to reduce edge heat losses to an acceptable level if this edge insulation is not built into the apparatus (see 5.7).

7.6.3 Settling Time and Measurement Interval—Verify the existence of thermal equilibrium by observing and recording, the emf output of the heat flux transducer, the mean temperature of the specimens, the temperature drop across the specimen, and a calculated \(\lambda \) value. Make observations at time intervals of at least 10 min until five successive observations yield values of thermal conductivity, which fall within \(\frac{1}{2} \) % of the mean value for these five readings. If the five readings show a monotonically increasing or decreasing trend, equilibrium has not been attained. In this case, additional sets of readings shall be taken. If experience has shown that a shorter time interval may be used, follow the same criteria for stability. For high density specimens (\(\rho > 40 \text{ kg/m}^3 \)) or for low
conductance specimens \((C < 0.05 \text{ W/Km}^2)\) the time between readings may have to be increased to 30 min or longer \((19)\).

8. Error Analysis

8.1 A complete error analysis is complex; however, some form of error analysis is mandated for compliance with this test method. Such an error analysis is useful for estimating which parameters may contribute to the overall uncertainty in the measurements. It is the option of the manufacturer or user of the apparatus to follow the guidelines given in 8.2, 8.2.1, or 8.3 to determine the uncertainties. It is mandated, however, that any result shall be accompanied with its uncertainty.

8.1.1 For any one given apparatus, a careful error analysis as outlined here, in most cases, will show up any major difficulties, which may need correcting in order to improve the measurement accuracy of the heat flow meter apparatus. The performance of this analysis involves consideration of the following points.

8.1.2 Estimates of errors in each individual measurement procedure and propagation of these errors to the final result.

8.1.3 Measurements to determine apparatus variability to intentional deviations from normal operations.

8.1.4 Measurements on reference materials and participation in round-robin programs.

8.1.5 For a more complete discussion of error analysis the reader is directed to the ISO “Guide to the Expression of Uncertainty in Measurements” \((20)\).

8.1.6 Calibration Errors:

8.1.6.1 Heat flux transducer calibration is temperature dependent and must be considered if the transducer temperature is changed.

8.1.6.2 Specimen temperature gradient may affect the calibration factor.

8.1.6.3 Heat flow meter apparatus calibration may be dependent on heat flux.

8.2 To illustrate a procedure of error analysis estimation, consider the operational definition of thermal conductivity:

\[\lambda = S \cdot E \cdot L / \Delta T \]

(5)

The uncertainties in \(S\), \(E\), \(L\), and \(\Delta T\) \((\delta S, \delta E, \delta L, \text{ and } \delta \Delta T)\) can be used to form the uncertainty \(\delta \lambda\) by the usual error propagation formula where the total uncertainty is calculated from the square root of the sums of the squares of the individual standard deviations.

\[(\delta \lambda / \lambda)^2 = (\delta S / S)^2 + (\delta E / E)^2 + (\delta L / L)^2 + (\delta \Delta T / \Delta T)^2 \]

(6)

This equation assumes that the errors in \(S\), \(E\), etc., are random and independent of each other since the covariance terms are omitted. This is valid here if different instrumentation is used for measurements on each of the variables \((20)\). In order to use Eq 6 the operator must estimate the maximum uncertainty for each variable and examine the sources of error to determine which can occur randomly and which can occur simultaneously.

8.2.1 Care shall be taken to evaluate properly all of the uncertainties in the variables \(S\), \(E\), \(L\), etc. For example, obvious sources of error in \(E\) are those caused by extraneous transverse heat flow along leads and deviations from one dimensional heat flow; however, an often neglected but important heat leak is that caused by a temperature drift of the transducer itself. This can be estimated readily from the heat capacity of the transducer assembly and the drift detection limit of the measurement system. The error in \(\Delta T\), \(\delta \Delta T\), can be caused by calibration errors and measurement errors, but also by incorrect placement, incorrect thermal anchoring, and disturbances introduced by the thermocouple itself.

8.3 Experiments should be performed to determine the variability of the test results to deviations from normal operating conditions. This variability combined with the estimated control stability under normal operating conditions can be used to estimate the error from this source. As one example, the effect of an imperfect guard balance control can be determined by purposely offsetting the guard, if this is possible, by a sufficient \(\Delta T\) in both directions and measuring the differences in the measured output.

8.3.1 Care should be taken not to use such large offsets that nonlinear effects occur in the specimens. These results combined with the probable value of the offset during normal operation yield the error due to imperfect guard balance.

8.4 The total estimated imprecision can be listed in a table of errors, such as shown in Table 1. This table is shown as an example only and does not represent any one particular heat flow meter apparatus since the errors will be specific to each apparatus.

9. Calculation

9.1 Density and Change in Mass—When required, calculate the density of the dry specimen as tested, \(\rho\), the mass change due to conditioning of the material, and the mass change of the specimen during test.

9.1.1 Density of Batt and Blanket Specimens—It has been found that it is important to measure the mass of the specimens in contact with the metering area. The area of the specimen directly measured shall be cut out and its mass determined after testing, unless the specimen must be retained for further testing.

9.2 Thermal Properties for One Specimen—When only one specimen is used, calculate the thermal conductance of the specimen as follows:

\[C = S \cdot E \cdot L \]

(7)

and where applicable, calculate the thermal conductivity, as follows:

\[\lambda = S \cdot E \cdot (L / \Delta T) \]

(8)
insulations testing a fiberglass blanket and several types of loose-fill
Adams and Hust, included eleven participating laboratories

9.4 Other derived thermal properties may be calculated but
only under the provisions given in Practice C 1045.
9.5 Thermal Properties for Two Specimens—All pertinent
equations of 9.2 and 9.3 apply to this configuration, provided
SÆ will be replaced by (SÆ1Æ3Æ2/2Æ2Æ1), where the superscripts ‘ and ” refer to the first and second heat flux
transducer, respectively.

10. Precision and Bias
10.1 The precision and bias of this test method cannot be
stated quantitatively for all apparatus variations and test
conditions.
10.1.1 The precision of a heat flow meter apparatus can be
determined by making multiple measurements on the same
standard, removing and installing the specimen for each
measurement. To obtain the best estimate of the precision, this
study shall be done over an extended time period where the
reference standard is treated as an unknown. It is common for
a laboratory with good practices to have a heat flow meter
apparatus precision with a standard deviation of less than
0.5 %.
10.1.2 One excellent way to monitor the stability of the
calibration, and thus the precision of the heat flux meter
apparatus, is to generate and use a control chart. In this way,
often it is easier to spot changes in the calibration, such as drift,
or a sudden change in a transducer output.
10.2 A series of three round robins was conducted between
1976 and 1983, as reported by Hust and Pelanne (21), and
employed low density fiberglass specimens from 2.54 to
10.2/cm thick with densities ranging from 10 to 33 kg/m 2 . A
total of twelve laboratories was involved in these studies. The
interlaboratory imprecision, at the two standard deviation level
determined using Practice E 691, was found to vary from
1.92 % to 3.54 % between 2.54 and 10.2 cm.
10.3 Interlaboratory testing carried out between nine labora-
tories under the National Voluntary Laboratory Accreditation
Program currently is showing an interlaboratory imprecision of
2.12 % at the two standard deviation level based on testing of
similar but not identical specimens (22, 23).
10.4 A round robin conducted in 1987, as reported by
Adams and Hust, included eleven participating laboratories
testing a fiberglass blanket and several types of loose-fill
insulations (24). The blanket insulation had an interlaboratory
imprecision of 3.7 % at the two standard deviation level. The
loose-fill interlaboratory imprecision was found to be > 10 %
for different materials at the two standard deviation level. It has
been suggested that the principal cause for the significant
differences observed is the various specimen preparation tech-
niques used by the various laboratories.
10.5 A round robin conducted in 1990, as reported by
McCaa and Smith, et. al., included ten participating labora-
tories testing a fiberglass blanket and several type of loose-fill
insulation (25). The blanket insulation had an interlaboratory
imprecision of 2.8 % at the two standard deviation level. The
loose-fill interlaboratory imprecision was found to be 5.0 %
for perlite, 5.8 % for cellulose, 9.4 % for unbonded fiberglass, and
10.5 % for mineral wool at the two standard deviation level.
This represented a significant improvement over the 1987
results and is attributed to a more concise specimen preparation
procedure in Practice C 687.

11. Report
11.1 The report of the results of each test shall include the
following information with all data to be reported in both SI
and inch-pound units unless specified otherwise.
11.1.1 The report shall be identified with a unique number-
ing system to allow traceability back to the individual meas-
urements taken during the test performed.
11.1.2 Name and any other pertinent identification of the
material including a physical description.
11.1.3 Description of the specimen and its relationship to
the sample, including a brief history of the specimen, if known.
11.1.4 Thickness of the specimen as received and as tested.
11.1.5 Method and environment used for conditioning, if
used.
11.1.6 Density of the conditioned specimen as tested, kg/
m 3.
11.1.7 Mass loss of the specimen during conditioning and
testing, in percentage of conditioned mass, if measured.
11.1.8 Mass regain of the specimen during test, in percent-
age of conditioned mass, if measured.
11.1.9 Average temperature gradient in the specimen during
test as computed from the temperatures of the hot and cold
surfaces, K/m.
11.1.10 Mean temperature of the test, K or °C.
11.1.11 Heat flux through the specimen, W/m 2 .
11.1.12 Thermal conductance, W/m 2 : K.
11.1.13 Duration of the measurement portion of the test,
min or h.
11.1.14 For loose-fill materials, report the specimen prepa-
ration followed.
11.1.15 Date of test, the date of the last heat meter calibra-
tion, and the type or types of materials used.
11.1.16 Estimated or calculated uncertainty in reported
values. It is optional as to which of the error analysis methods
given in Section 8 is used by the laboratory.
11.1.17 Orientation and position of the heat meter apparatus
during test (vertical, horizontal, etc.), and whether the meter
was against the hot or cold surface of the specimen and
whether the edges of the specimen(s) were sealed or open to
the ambient.
11.1.18 For direct reading apparatus, the results of the
calibration of electronic circuitry and equipment or a state-
ment of compliance including date, and a statement of compliance
on linearity requirements.
11.2 In many cases a laboratory is requested to provide only
the thermal conductivity at a specified mean temperature and
a few pertinent physical properties, such as density, and test
thickness. An abridged test report shall state “Abridged ASTM
C 518 Test Report” and shall include the thermal transmission property of interest, mean temperature, test thickness, and bulk density. It is mandated that an uncertainty statement shall be transmitted with the thermal transmission property. Compliance to Test Method C 518 requires that the other test parameters specified in 11.1.1-11.4 to be recorded in the laboratory records.

11.3 For certification testing only, the specimens used in calibration shall be identified as to the type, thermal resistance, date of specimen certification, source of certification, expiration date of calibration, and the certification test number. Where applicable include a statement of the laboratory accreditation of the test facility, including the date of the latest inspection.

11.4 Statement of compliance, or where circumstances or requirements preclude complete compliance with the procedures of the test, agreed exceptions. A suggested wording is “This test conformed with all requirements of ASTM C 518— with the exception of (a complete list of exceptions follows).”

12. Keywords

12.1 calibration; error analysis; heat flow meter apparatus, thermal resistance; heat flux; instrument verification; thermal conductivity; thermal testing

APPENDIXES

(Nonmandatory Information)

X1. (SEE FIGURES.)

X2. RESPONSE OF HEAT FLUX TRANSDUCERS

X2.1 Configurations—The general features of a heat flow meter apparatus with the specimen or the specimens installed are shown in Section 6. A heat flow meter apparatus consists of two isothermal plate assemblies, one or more heat flux transducers, equipment to measure and control temperatures, thickness, and measure the output of the heat flux transducers and equipment to control the environmental conditions when needed. Each configuration will yield equivalent results if used within the limitations stated in this test method (24). For a particular heat flux transducer, the test configuration that has the fastest response, that is the shortest settling time, is best determined by experiment. Four specimens of different materials, such as an urethane foam, ceramic fiber board, a rubber, and a high conductivity, low-thermal capacity material, should be tested in each configuration. A study of these results will allow either the selections of the proper configuration for each type of material or the selection of a reasonable configuration for all types.

X2.1.1 In order to predict settling times for all types of specimens, each of the above specimens shall be retested after being conditioned to temperatures both below and above the mean temperature of the test.

X2.2 Time Response of Heat Flux Transducers:

X2.2.1 High Thermal Resistance Transducer—A transducer with a high thermal resistance generally is used when the transducer is attached to one or both of the isothermal plates. When the specimens are preconditioned to the mean temperature of the test and when the plates are capable of both heating
and cooling the specimens, the time response of a high resistance transducer will be more rapid than a comparable guarded hot plate apparatus. If the heat flux transducer has appreciable mass, the response will not be rapid.

X2.2.1.1 When two transducers are used and attached to the isothermal plates, these can be used to obtain a very rapid response times if both plates are capable of heating and cooling and if the outputs of both transducers are summed (25).

X2.2.2 Low Thermal Resistance Transducers—The low-thermal resistance, gradient-type heat flux transducer is better suited to the configuration where the transducer is not attached to either plate. The temperature drop across the low-resistance transducer is small enough that the two specimens can be considered as halves of a single specimen. When the specimens are first conditioned to the mean temperature of the test and when the specimens are identical, the response is sufficiently rapid to be used for quality control work.

X2.2.2.1 Where half thicknesses of the normal specimen can be used, it can be more rapid than the single transducer configuration, especially when each of the specimens is first conditioned to the mean temperature at which it will be tested.

X2.3 Sensitivity of Configurations to Edge Losses:

X2.3.1 Heat loss from specimen edges may be significant under some conditions. Factors to be considered when evaluating edge losses are thickness of specimen, conductivity of specimens, width of the guard, amount of external insulation, and edge ambient temperature.

X2.3.2 The configuration with the transducer mounted on one isothermal plate is similar to the guarded hot plate apparatus regarding edge heat losses through the specimen. The edge heat losses in the transducer may be much more significant than those in the guarded hot plate apparatus because they may produce errors due to the temperature nonuniformity on the side of the transducer in contact with the specimen.

X2.3.3 The configuration with two transducers mounted on the isothermal plates is the most insensitive to edge conditions if the average of the readings of the two meters is assumed to be the measured heat flux per unit area through the specimen. If the plates are perfectly uniform in temperature, if the two transducers are exactly equal in the layout of the thermopile junctions, and if the specimen has thermal conductivity independent of temperature, this configuration is nearly insensitive to edge conditions. Even under these ideal conditions, however, the use of this configuration does not eliminate edge losses, but only reduces the apparatus susceptibility to variations in the boundary temperatures.

X2.3.4 The configuration with the transducer between the two specimens is very sensitive to edge heat losses on the heat flux transducer since the power that flows through the edges is supplied not by a heavy isothermal metal plates, but by the specimens, so that their surface temperatures may not be uniform. If the transducer is sensitive to temperature differences along its main surfaces, edge heat losses may now create serious errors. Edge heat losses within the specimens are similar to those in the guarded hot plate when the surrounding temperature is that of the hot or cold plate.

X3. PROVEN PERFORMANCE OF A HEAT FLOW APPARATUS

X3.1 Proven Performance—Any heat flow meter apparatus that is new or has been modified shall be tested for the following characteristics and corrections shall be made where a change of greater than one percent occurs in the transducer output due to the effects of X3.1.1-X3.2 over the range of operation and are recommended for changes of 0.3 % over the range of operation.

X3.1.1 Zero Offset—This condition can be achieved by assuring that both plate assemblies are at the same temperature. If there is any output from the transducer for zero heat flux, this may be due to any or all of the following:

X3.1.1.1 Electrical contact resistance on a transducer with low output. This may be corrected if one can improve the connections to eliminate the problem. This type of output may be temperature dependent.

X3.1.1.2 Also, check grounding circuits because such a signal may be due to AC pickup in the leads from the transducer.

X3.1.1.3 If after checking X3.1.1.1 and X3.1.1.2 there is still a zero off-set, it may be possible to correct for this by assuring that the calibration curve of output versus heat flux is linear over the range of operating conditions.

X3.1.1.4 Susceptibility to warm or cold plate temperature nonuniformity. Check for temperature nonuniformity under all operating conditions and over a range of specimen thermal resistances.

X3.1.1.5 Drift in the transducer due to material aging of delamination. If such a change is noted, this should be used to determine the required calibration frequency.

X3.1.1.6 Temperature coefficient of the transducer sensitivity. This depends on the type of temperature detectors used in the transducer (thermocouple materials used in the thermopile) and the type of material used for the transducer core. If it is found that the sensitivity is temperature dependent, a curve of sensitivity versus temperature shall be developed and used to correct measurement data.

X3.1.1.7 Heat flow down the transducer leads. One possible way to check for this is to move one’s hand across the surface of the transducer between the metering area and the point where the leads exit the plate assembly, while observing the transducer output. In a well designed plate or transducer assembly there should be no observable output from the transducer except in the metering area.

X3.1.1.8 Effect of the thermal conductivity of the specimen on the sensitivity of the transducer. A “thermal shorting” effect between elements caused by low thermal resistance between the sensors of the thermopile or a funneling of heat through the sensors can change the sensitivity of the transducer. This can
best be tested by running specimens with widely different thermal resistances.

X3.1.1.9 Effect of loading pressure on the transducer sensitivity. This should only be a problem if the transducer core is flexible.

X3.2 Finally, measurements shall be performed on transfer standards or accepted reference materials, to prove the performance of the apparatus. Care should be taken to ensure that the reference materials have characteristics similar to the specimens to be tested, and that the uncertainties of the standards themselves are known.

References